Gromov hyperbolicity in lexicographic product graphs
نویسندگان
چکیده
منابع مشابه
Gromov Hyperbolicity in Strong Product Graphs
If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity const...
متن کاملGromov Hyperbolicity in Mycielskian Graphs
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph GM is hyperbolic and that δ(GM) is comparable to diam(GM). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs;...
متن کاملLexicographic Product of Extendable Graphs
Lexicographic product G◦H of two graphs G and H has vertex set V (G)×V (H) and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1u2 ∈ E(G), or u1 = u2 and v1v2 ∈ E(H). If every matching of G of size k can be extended to a perfect matching in G, then G is called k-extendable. In this paper, we study matching extendability in lexicographic product of graphs. The main result is that the l...
متن کاملDetours and Gromov hyperbolicity
The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK], [BS], [BBo], [BBu], and extendability of Lipschitz mappings [L]. In this theory, it is often additionally assumed that the hyperbolic metric space is proper and geodesic (meaning that closed balls are compa...
متن کاملIdentifying Codes of Lexicographic Product of Graphs
Let G be a connected graph and H be an arbitrary graph. In this paper, we study the identifying codes of the lexicographic product G[H] of G and H. We first introduce two parameters of H, which are closely related to identifying codes of H. Then we provide the sufficient and necessary condition for G[H] to be identifiable. Finally, if G[H] is identifiable, we determine the minimum cardinality o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings - Mathematical Sciences
سال: 2018
ISSN: 0253-4142,0973-7685
DOI: 10.1007/s12044-018-0451-y